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Analysis of the Information Capacity of Neuronal Molecular
Communications under Demyelination and Remyelination

Geoflly L. Adonias, Conor Duffy, Michael Taynnan Barros,
Claire E. McCoy, and Sasitharan Balasubramaniam

Abstract— Demyelination of neurons can compromise the com-
munication performance between the cells as the absence of
myelin attenuates the action potential propagated through the ax-
onal pathway. In this work, we propose a hybrid experimental and
simulation model for analyzing the demyelination effects on neuron
communication. The experiment involves locally induced demyeli-
nation using Lysolecithin and from this, a myelination index is
empirically estimated from analysis of cell images. This index
is then coupled with a modified Hodgkin-Huxley computational
model to simulate the resulting impact that the de/myelination
processes has on the signal propagation along the axon. The
effects of signal degradation and transfer of neuronal information
are simulated and quantified at multiple levels, and this includes
(1) compartment per compartment of a single neuron, (2) bipartite
synapse and the effects on the excitatory post-synaptic potential,
and (3) a small network of neurons to understand how the im-
pact of de/myelination has on the whole network. By using the
myelination index in the simulation model, we can determine the
level of attenuation of the action potential concerning the myelin
quantity, as well as the analysis of internal signalling functions of
the neurons and their impact on the overall spike firing rate. We
believe that this hybrid experimental and in silico simulation model
can result in a new analysis tool that can predict the gravity of
the degeneration through the estimation of the spiking activity and
vice-versa, which can minimize the need for specialised laboratory
equipment needed for single-cell communication analysis.

Index Terms— Re/Demyelination, Lysolecithin (LPC),
Hodgkin-Huxley model, Myelination Index, Molecular
Communications.

I. INTRODUCTION

With the ever-growing knowledge of the biological processes
involved in the regeneration of nerve tissues, a better understanding
of these events is crucial for the creation of more robust models
that could accelerate the development of targeted therapeutics against
neurodegeneration [1]. For example, multiple sclerosis (MS) is an
autoimmune demyelinating disease (DD), characterised by localised
destruction of protective myelin sheaths around axons and subsequent
impairment of neuronal function and action potential (AP) propagation,
leading to the formation of sclerotic plaques across the central nervous
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system (CNS). In relapse-remitting MS (RRMS), demyelination
is caused by abnormal peripheral immune invasion of the CNS
and inflammatory attack against the myelin sheath, most notably
from activated T-cells [2]. This form of the disease is characterised
by “attacks” (relapse), followed by periods of recovery (remitting),
where innate repair mechanisms of the CNS restore damaged myelin
in a process known as remyelination. However, MS can also
manifest in the form of primary progressive MS (PPMS), where
demyelination is continuous and remyelination mechanisms appear to
be dysfunctional [3]. It is, therefore, of considerable interest to develop
therapies that can promote or restore remyelination, with current
research approaches including stem cell therapeutics, biomaterial
construct implants and nanoparticle or extracellular vesicle treatment
formulations, among others [4]–[7].

The drug Lysolecithin (LPC) has been widely used for years to
experimentally induce demyelination in neurons from both the central
and peripheral nervous systems (PNS). Many studies have taken advan-
tage of LPC to help characterise experimental models in terms of its
morphology by light and electron microscopy, electrophysiology and
biochemistry. The various uses and validity of organotypic cerebellar
slice cultures in studying demyelinating disease have been thoroughly
reviewed by Doussau and colleagues [9], identifying the culture system
as the easiest way to replicate the various stages of myelination,
demyelination and remyelination that are of interest outside of in
vivo models. These cultures faithfully retain the cytoarchitecture and
neuronal networks of the cerebellar cortex in vitro for weeks to
months, allowing for long-term investigations of novel therapeutics and
sufficient recovery time following a demyelinating insult to observe
remyelination. Furthermore, the neurons in these slice cultures retain
electrophysiological characteristics, such as Purkinje cells forming
new synapses with targets upon stimulation [10]. Crucially to study
remyelination, cells at all stages of the oligodendroglia lineage are
retained in the organotypic cerebellar slice culture [11].

Turning to LPC specifically, this was first demonstrated to induce
demyelination in organotypic cerebellar slice cultures by Birgbauer
and colleagues in 2004, as observed by immunostaining for myelin
basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG),
and 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNPase), followed
by recovery and subsequent remyelination [12]. This approach to
inducing demyelination has been used in several studies to date,
including a demonstration that the MS therapy fingolimod can promote
remyelination [13], validation of an immune-mediated technique for
inducing demyelination [14] and characterization of the critical pro-
remyelination properties of microglia [8], [15]. Furthermore, focal
injections of LPC to the spinal cord (Fig. 1) are a frequently-used in
vivo model of demyelination [16], thus using an LPC-based in vitro
model is attractive to screen potential treatments before commencing
in vivo studies.

The findings on the demyelination and remyelination processes
observed with the help of the wet-lab experiments will allow the
construction of a more refined and accurate computational simulation
model and, possibly, shine light on the way neurons encode infor-
mation. In the last few years, there has been an increasing number
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Fig. 1. (A) Schematic of organotypic brainstem and cerebellum slice culture model set-up. Drawings of mouse brains borrowed from Miron et al [8].
(B) Average myelination indices of slices in myelination, demyelination and remyelination conditions. Each datapoint represents the index of a single
slice. ** = p < 0.01, **** = p < 0.0001, one-way ANOVA with post-hoc Sidak’s multiple comparisons test. Graph generated in GraphPad Prism.
(C) Representative images of myelination, demyelination and remyelination staining under confocal microscopy, composite images. Blue = DAPI,
Green = NFH, Red = MBP.

of scientists that started to look at alternative coding techniques,
some of them imposing profound implications on the field of neural
computation [17]. Firing rate coding [17], [18] is a technique where
the rate with which spikes are being fired is proportional to the
strength of the stimuli. Several other coding techniques have also
been proposed as alternatives such as rank order coding or sparse
coding, where these techniques take into account that real neurons use
spikes that are followed by refractory periods which should play a role
in information encoding. One of the simplest techniques proposed is
to just count the number of action potentials fired during a particular
period, and this is referred to as count coding [17]. With this coding
technique, the maximum amount of information transmitted by N
neurons is log2(N+1) bits. Another alternative method is to check for
the presence of an action potential in a specific time window. In this
technique, the presence of a firing will be considered a bit “1” and its
absence a bit “0”, and this is referred to as binary coding [17], [19].
For a binary code, the maximum amount of information transmitted
by N neurons is equal to log2(2N ) bits. More complex encoding
techniques have also been proposed. Such approaches use the precise
time of each spike on each input to increase the maximum amount
of information transmitted by a group of neurons. In this case, the
maximum amount of information transmitted by N neurons in a time
window of t ms, where the spikes can be timed with a precision of 1
ms, is N · log2(t) bits. Thus, this encoding technique is known as
temporal coding or timing coding [17], [20].

This model should be able to play a significant role in the analysis
of the impact that demyelination and remyelination will have on the
neuronal signalling communication process and should also be used to
add a new analysis tool for wet-lab experimentalists without the need
for specialised equipment. This hybrid computational simulation and
experimental model has the potential to improve both sides of the study
and bring together scientists and researchers from different disciplines
by unifying their findings and validating their data for a more reliable
analysis of the demyelination and remyelination processes on the

molecular aspect of neuronal communications.
The objective of this paper is to computationally validate the data

collected from wet-lab experiments on LPC-induced demyelination
and to analyse its impact on the communication once the demyelinated
neuron is partially remyelinated. The contributions of this paper are:

• A novel hybrid wet-lab-computational model: We describe the
construction of a wet-lab dataset of myelination under conditions
of LPC-induced demyelination and subsequent remyelination,
alongside undisturbed myelination controls, suitable for input to
a computational model. By utilising a method of analysis from
neuronal molecular communications, we use this hybrid model
to understand the signal propagation behaviour as they propagate
through the axonal pathway.

• Modelling of the spiking rate for myelin-deficient neurons:
As proposed in the literature, spike firing usually follows a
Poisson process [21], [22]. The rate and pattern of firing can
defer between different demyelination intensities leading to the
modelling of their respective behaviour into known distributions.

• Multi-perspective theoretical analysis of LPC-induced de-
myelination: Communication metrics (e.g., channel capacity,
attenuation and time delay) analysis are presented and discussed
on the effects of demyelination from three different perspectives,
(1) single neuron and the signal propagation through axonal
compartments, (2) bipartite synapse and the effects on the
excitatory post-synaptic potential and, (3) small neuronal network
of 27 cells is analysed to determine the network communication
when a neuron starts to demyelinate.

The remainder of this paper is as follows in Section II we present
the methodologies applied for both the wet-lab experiments and the
computational simulations for analysis and validation of data from
LPC-induced demyelination. In Section III, we present and discuss
our results from (1) single neuron, (2) bipartite synapse and (3) small
neuronal network perspectives and, finally, in Section IV, we conclude
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this analysis and discuss potential future works.

II. MATERIALS AND METHODS

A. LPC-induced Demyelination

1) Animals and Tissue Preparation: All experiments were
conducted in accordance with EU and Health Products Regulatory
Authority guidelines. A breeding colony of wild-type C57BL/6J
mice was maintained in the Biomedical Research Facility in the
Royal College of Surgeons in Ireland using mice obtained from
The Jackson Laboratory. Organotypic brain slice cultures of the
brainstem and cerebellum were established to examine demyelination
and remyelination ex vivo, based on the protocol described by Doussau
and colleagues [9]. Briefly, the cerebellum and brainstem were cut
into slices 300 µm thick along the sagittal axis using a McIlwain
Tissue Chopper. Slices were separated in slice culture media (46.55%
Minimum Essential Medium (MEM), 25% heat-inactivated horse
serum, 25% Earl’s balanced salt solution, 1% glutamine, 1% 100
U/mL P/S, 1.45% glucose 45, final concentration 6.5 mg/mL) and
transferred onto 0.4 µm Millipore mesh membrane inserts inside
6-well plates containing 1 mL of slice culture media. Typically 6-7
slices were obtained per brain, and the slices from each brain were
distributed across separate wells, with 6 slices per culture well. Slices
were then cultured at 37 °C, 5% oxygen, with fresh slice culture
media, exchanged every 2-3 days, for a total of 14 days in vitro
(d.i.v.).

2) Demyelination and Remyelination: To induce demyelination,
the drug lysolecithin (LPC) was applied to 14 d.i.v. cultures at a
concentration of 0.5 mg/mL for 16 hours. LPC was then withdrawn,
the cultures were washed once in slice culture media before being
transferred and maintained in fresh media for a 24-hour recovery
period. Slices were then allowed to remyelinate for a further 14 days
in vitro, with media changes every 2-3 days as before.

3) Immunofluorescence and Fluorescent Microscopy: Im-
munofluorescent staining and fluorescent microscopy were used
to evaluate the extent of myelination in organotypic brain slice
cultures. Cultures were washed once in PBS before fixation with
4% paraformaldehyde solution (PFA) for 45 minutes, at which point
PFA was withdrawn and cultures ready for staining. Cultures were
first blocked for 3 hours using a 2% horse serum, 10% goat serum,
1% BSA, 0.25% Triton-X-100, 1 mM HEPES solution in PBS at room
temperature. The mesh insert membranes were then cut and slices
transferred to 24-well plates for staining. Primary antibodies for anti-
NFH (1:2000) and anti-MBP (1:600) were then applied in the block
solution, 400 µL/well for 2 days at 4 °C. Slices were then washed with
shaking three times at room temperature in PBS-0.01% Triton-X-100,
1 hour per wash, before applying AlexaFluor secondary antibodies
- 1:500 anti-chicken AlexaFluor 488, 1:500 anti-rat AlexaFluor 568,
in block solution, 400 µL/well overnight at 4°C. Slices were then
counterstained with DAPI –1:30,000 of stock in PBS, 500 µL per
well – for ten minutes before washing three times in PBS-0.01%
Triton-X-100 as before. Slices were mounted with ProLong Gold and
were labelled with randomly generated 6-digit numbers corresponding
to treatment or control conditions, to introduce blinding during image
acquisition.

Slices were imaged using a Zeiss 710 confocal microscope at 40x
magnification. Three representative image stacks were acquired per
slice, using Z-stack imaging at 0.5 µm intervals across 10 µm. Images
were then analysed in ImageJ for co-localisation of MBP to NFH
(neurofilament protein H) to assess the extent of myelination in each
slice. A myelination index (ιmy), ranging from 0 to 1, was calculated
for each z-stack by dividing the amount of co-localisation by the total
amount of NFH, and averages for each slice calculated by pooling

Fig. 2. Comparison of staining quality at the top (slice 16 of 21, 2.5µm
below surface) and bottom (slice 5 of 21, 8µm below surface) of image
stacks under confocal microscopy. Composite images, Blue = DAPI,
Green = NFH, Red = MBP.

myelination indices from representative images together. The indices
obtained are, therefore, a measure of myelin sheaths overlaid on axon
fibres, relative to total axon density. A graphical illustration of tissue
analysis and slice culture model set-up are shown in Fig. 1, with a
description of the culture set-up, the timeline for introducing LPC
for demyelination at day 14, and the stop point for remyelination
in Fig. 1(a). Taking the average myelination index for each slice
we confirm that introduction of LPC for 16h produced a significant
decrease in myelination, allowing a 14-day recovery period following
LPC withdrawal, we observed a significant restoration of myelin
sheaths in the remyelination conditions as measured by the myelination
index relative to demyelination slices, Fig. 1(b). Representative images
for each condition are also shown for illustrative purposes in Fig. 1(c).
As can be seen in the “Myelination” image, prior to application of
LPC clear (red) myelin sheaths can be observed overlaid on (green)
axons. Following LPC application, substantially less myelin stain
can be observed in the “Demyelination” image, and what myelin is
present does not form clear sheath structures, most likely debris. In
the “remyelination” image, taken 14 days following LPC withdrawal,
myelin in sheath structures can be observed again laid over axons,
though perhaps less pronounced or thinner than the myelination
condition. This is an expected characteristic of repaired myelin sheaths.
It is therefore clear that the myelination index measurement is reflective
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Fig. 3. Illustration of an axonal pathway with a (A) detail of a Node
of Ranvier and two internodes, respectively, (B) Hodgkin-Huxley circuit
model with parameter detailed description provided in Section II-B; the
parameters Ci and gil and their subsequent myelinated compartments
are described by equations (14) and (15), respectively.

of clear differences in myelination of axons. For that reason, for
computational analysis, indices were restricted to the top 3.5µm
of each 10µm stack captured across slices and conditions which,
visually, it is clear that NFH staining was of superior quality in the
regions of the slice closer to the surface, as seen in Fig. 2.

B. Computational Model for Axonal Demyelination

The axon under analysis in this work is modelled according to
the Hodgkin-Huxley formalism [23] with modifications proposed by
Quandt and Davis [24], as depicted in Fig. 3, where the parameters
are described in Table I.

When an external stimulus, Iext, is applied, it triggers either the
activation or inactivation of the ionic channels that allow the exchange
of ions that result in depolarisation (or hyperpolarize when it is
inhibited) of the membrane of the cell. These dynamic changes in the
voltage and current of each ion diffussion through the membrane are
modelled as

C
dV
dt

= −Il − INa − IK − Isyn + Iext, (1)

where V is the membrane potential, Ix are the ionic currents, where
x represents either a specific ion (Na, K) or the leak channel (l).
Those currents are represented as

Il = gl(V − El), (2)

INa = gNam
3h(V − ENa), (3)

IK = gKn
4(V − EK), (4)

TABLE I
SUMMARY OF ELEMENTS AND PARAMETERS FOR MODELLING AND

SIMULATION.

Element Value Unit

Membrane capacitance (Cm) 1 µF/cm2

Axon radius (δa) 5 µm
Node length (Ln) 4 µm
Internodal distance (di) 2 mm
Internal resistance (ra) 100 Ω·cm
Myelin sheath (w) 200 wraps
Sodium reversal potential (ENa) 53 mV
Potassium reversal potential (EK ) -74 mV
Leak reversal potential (El) -60 mV
Sodium conductance density (GNa) 1200 mS/cm2

Potassium conductance density (GK ) 90 mS/cm2

Leak conductance density (Gl) 20 mS/cm2

Internodal membrane conductance (gi) 0.3 mS/cm2

Temperature (T ) 37 °C
Time step (dt) 0.25 µs
Q10 3.0 -

where m and h are the activation and inactivation variables of the
sodium (Na) channel, respectively, and n is the activation variable
of the potassium (K) channel. Following the approach proposed by
Hodgkin and Huxley [23], those variables are represented below as x
and their dynamics are described as

dx
dt

= αx(V )(1− x)− βx(V )x, (5)

in which the values of the rate constants αi and βi for the i-th ionic
channel can be defined as

αm =
0.1(V + 40)

1 + e−(V+40)/10
, (6)

βm = 4e−(V+65)/20, (7)

αh = 0.07e−(V+65)/20, (8)

βh =
1

1 + e−(V+35)/10
, (9)

αn =
0.01(V + 55)

1− e−(V+55)/10
, (10)

βn = 0.125e−(V+65)/80. (11)

We also integrated a process into the model for the synaptic inputs
from pre-synaptic cells in which the ionic channels that are activated
will release neurotransmitters that are diffused into the synaptic cleft
towards neuroreceptors at the post-synaptic cell. This relationship is
represented as

Isyn = gsyn(V − Esyn), (12)

where the synaptic conductance, gsyn, and the synaptic reversal
potential, Esyn, are used to describe many different types of synapses,
and the latter may assume different values according to the types of
neuroreceptors. The four major transmitters used for communication
in the nervous systems are listed in Table II [25], [26].

The gsyn can be described as a superposition of exponentials and
is represented as
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TABLE II
Esyn FOR DIFFERENT RECEPTORS.

Neurotransmitter Neuroreceptor Esyn (mV)
Glutamate Non-NMDA 0
Glutamate NMDA 0

GABA GABAA −70
GABA GABAB −100
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(a) Action potential propagation on an axon fully myelinated.
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(b) Action potential propagation on an axon with half of its normal myelination
levels.

Fig. 4. Parallel for action potential propagations between a fully
myelinated and a partially (50%) demyelinated axon.

gsyn =
∑
f

ḡsyn e−(t−t
(f))/τ H(t− t(f)) , (13)

where τ is a time constant, ḡsyn is the peak synaptic conductance,
t(f) is the arrival time of a pre-synaptic action potential and H(·) is
the Heaviside step function [25]. As we have investigated in [27], the
membrane potential that reaches the pre-synaptic terminals can affect
the probability of releasing neurotransmitters. Consequently, anything
that would affect this potential could also indirectly lead to changes
in the release of neurotransmitters. In other words, it is not only
the synaptic current (Equation (12), but also all other ionic currents
that can influence the release of neurotransmitters and consequently
compromise the integrity of the signal being propagated down the
neuronal network.

The modifications, proposed by Quandt and Davis [24], on the
original Hodgkin-Huxley model is to incorporate the dynamics of
myelination and understand the signal propagation per compartment,
by including the capacitance of the internode (Ci), which is repre-
sented as

Ci =
2π δa di Cm
ιmyw + 1

, (14)

and the assumption that the internode have a specific leak conductance
(gil ), which is represented as

gil =
2π δa di gi
ιmyw + 1

, (15)

where ιmy is the myelination index described in Section II-A.3. The
myelinated compartments (also called internode compartments) are
modelled as not having ionic channels. This is mainly because as the

myelin sheath provides insulation, it also blocks the ionic channels in
the axonal membrane, not allowing the free movement and exchange
of ions between intra- and extra-cellular mediums. Furthermore, both
the Ci and gil values are heavily influenced by the number of myelin
wraps, w, as shown in equations (14) and (15) and, as w decreases
due to demyelination, it negatively impacts the speed and potential
responses concerning the propagation of the signal.

An axon with six internodes and seven nodes of Ranvier was
built as illustrated in Fig. 3. The simulations were conducted using
the NEURON simulation environment with Python [28], [29]. Each
point of stimulation was set at 200 spikes per second following a
Poisson process [22] unless otherwise stated. Five simulations were
conducted for each value of ιmy starting at full myelination (100%)
and decreasing at 12.5% intervals until it reaches 12.5%, hereafter
considered as full demyelination (see Section II-A). Each spike is
represented as a bit ‘1’ and its absence is represented as a bit ‘0’ in a
specific time slot. In this work, the time slot for sampling the neuronal
binary information is 5 ms. This is short enough to detect less than
a single spike and account for its refractory periods. The cells were
connected following a standard procedure with the NetCon object that
defines a synaptic connection. We are not using any morphological-
type-related connection probability as the neurons are modelled in a
generic structure and behaviour. The network arrangement does not
follow any structure in particular, e.g. cortical layers, instead it was
arranged in a cubic shape (more details in Section III-D) where there
was a single synapse per connection and, a single connection where
needed.

III. RESULTS AND DISCUSSION

A. Demyelination and Remyelination of Slice Cultures
Following the 16-hour treatment with 0.5 mg/mL LPC, we observed

a significant reduction in the myelination of neurons as determined by
the average myelination index of slices relative to untreated controls
(p < 0.01, one-way ANOVA and Sidak’s multiple comparisons
posthoc test). LPC-induced demyelination was observed to be of
a similar magnitude in our hands as reported by several other
groups [13], [14], [30]. Following 14 days of recovery post-LPC-
induced demyelination in brain slice media, remyelination was
observed that was significantly greater than the demyelination time-
point as determined by the myelination index (p < 0.0001, one-way
ANOVA and Sidak’s multiple comparisons posthoc test).

The average myelination index of each slice was used to determine
the success and overall extend of LPC-induced demyelination and
remyelination; however, individual myelination indices of each
captured image were also recorded as part of the analysis process.

B. Compartmental Analysis
To understand the dynamics of action potential propagation in the

axonal pathway, our modelling process should account for the effects
of myelinated and non-myelinated sections of the axon. For that reason,
we are using the multi-compartmental modelling framework [31] to
help put together a detailed representation of the axon that would
provide us with enough information regarding the electrical behaviour
of the neuronal membrane.

In this work, we have modelled the axon with Hodgkin-Huxley
compartments for the nodes of Ranvier and the myelinated internode
compartments. As indicated in Section II-B, even though both use
the same framework, the internodes are modelled slightly differently
to account for the myelin sheaths. Then, we decided to start our
analysis on the neuron itself, in other words, on the behaviour of
the membrane per compartment (Fig. 4). The model used follows
the description from Section II-B aiming to understand how partially
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Fig. 5. Relative mean shift in relation to a fully myelinated neuron.

myelinated neurons, i.e. under either demyelination or remyelination
conditions, affects the propagation of action potentials per neuronal
compartment. Fig. 4 shows how a neuron with half of its normal
myelin, Fig. 4(b), compared to a fully myelinated neuron shown in
Fig. 4(a). The results depicts not only a delay for the action potential
to reach its peak in all compartments but also shows how damages to
the myelin sheath can affect the value of membrane potential reached.
For that reason, we decided to numerically evaluate by how much
the shift in peak time and amplitude changes as the demyelination
worsens and, analogously, the changes due to remyelination processes.

1) Relative Mean Shift: Visually, we first noticed subtle shifts
in amplitude (peak potential reached by the membrane) and in time
(spikes were taking longer to reach their peak values). We then decided
to quantify these shifts, both in amplitude and in time, on average,
by proposing a metric that we called relative mean shift. For the
analysis on time shift, we consider the points in time where each
spike peaked at the input as T kin, where k = {1, 2, 3, ...,K} identifies
the order of each spike and, T kout as the peak times at the output.
Thus, we define the relative mean time shift, δt (ms), as

δt =
1

K

K∑
k=1

(T kout − T kin). (16)

Analogously, we can define the relative mean amplitude shift, δv
(mV), with V kin and V kout as the peak amplitudes of spike k at the
input and output, respectively.

As illustrated in Fig. 5, the difference in the average membrane
potential in relation to a full myelinated neuron is considerably
damaging to the signal propagation through the axonal pathway. At
12.5% myelination, the difference is almost 60 mV shown in Fig. 5(a)
and this is enough to not even consider the signal travelling down the
axon as a spike. The degradation in the membrane potential is not
linear, where its logarithmic-shaped curve illustrates a much steeper

Fig. 6. Bipartite synapse with demyelinated pre-synaptic neuron.
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Fig. 7. Capacity, C(X;Y) and mean mutual information, I(X;Y), for peer-
to-peer analysis of a pre-synaptic demyelinated neuron.

degeneration for the lower half of the indices when compared to
the upper half as the mean shift in amplitude starts to plateau as it
approaches full myelination. Analogous to the effects on membrane
potential, Fig. 5(b) shows how the peak times of the action potentials
are delayed as ιmy decreases. The negative-exponentially-shaped
curve depicts a smoother increase in the mean time shift for higher
indices. Both results in Fig. 5 match findings in Cohen et al [32], where
they identified longer onset latencies and lower peak amplitudes in
the conduction of action potentials along myelinated axons on models
of L5 pyramidal cells.

C. Bipartite Synapse Analysis

From the perspective of information and communication theory, the
neuron can be seen as peers in the nervous system characterising a peer-
to-peer communication system [33]. Even though the bit transmission
may be affected by the refractory period of a recently fired action
potential, depending on the intensity of the stimuli, new bits may still
be transmitted during relative refractory periods. Furthermore, if the
post-synaptic neuron does not manage to evoke a subsequent action
potential, there will be no waiting queue [26] which characterises the
channel as memoryless. This means that any spike not propagated,
because the post-synaptic neuron is unable to fire at the time the
pre-synaptic stimuli arrives, will be lost. A pair of neurons, one acting
as the transmitter, known as pre-synaptic neuron and, the other acting
as the receiver, called a post-synaptic neuron, form a bipartite synapse
as shown in Fig. 6. A synaptic connection between only two neurons
is considered a single input single output (SISO) communication
channel [22] and can be evaluated as such using well-known metrics
from information and communication theory such as capacity [34],
[35].

1) Channel Capacity: Shannon’s entropy of a discrete random
variable x and probability mass function p(x) can be used in biological
systems to represent information as bits in several processes and is
defined as
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(a) Spiking rate distributions for different ιmy .
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(b) Interspike intervals (ISI) distributions for different ιmy .

Fig. 8. Distributions for spiking rate and interspike intervals revealing a
shift in peak and widening of the curve for different myelination indices.

H(X) = −
P∑

x∈X
(x) log2 p(x), (17)

where X = {x0, x1}.
Additionally, the definition of conditional entropy is based on the

conditional and joint distribution of x and y:

H(X|Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x|y), (18)

where Y = {y0, y1}.
All the remaining probabilities are defined as follows:

p(x) = p(x = x0) + p(x = x1), (19)

p(y) = [p(y = y0) + p(y = y1)] p(y|x), (20)

p(y = y0|x = x0) = 1− p(y = y1|x = x0), (21)

p(y = y0|x = x1) = 1− p(y = y1|x = x1). (22)

In other words, we could characterise the destructive effects of
demyelination on the propagation of the signal as the probability of
receiving a bit ‘0’, i.e. no spike, given that a bit ‘1’ was sent at the
input, p(y = y0|x = x1) in Eq. (22). Moreover, as the remyelination
takes place, there is an increase on the probability of receiving a bit
‘1’, given that a bit ‘1’, i.e. spike, was sent, p(y = y1|x = x1) in
Eq. (22). This shows how the channel capacity can be affected as the
conditional probabilities for receiving a specific bit changes with the
degeneration and, eventually the partial regeneration of the myelin
sheath.

The mutual information between two variables indicates that the
input can be construed as a measure of the “noise” in the channel
given the output, and is calculated as
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Fig. 9. Mean and standard deviation for spiking rate and interspike
intervals for the analysis of a network of 27 neurons.

I(X;Y ) = H(X)−H(X|Y )

= −
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2
p(y|x)

p(y)
, (23)

and the maximum average mutual information in any single use of
the channel, known as capacity, which is represented as

C(X;Y ) = maxp(x)I(X;Y ). (24)

From our simulations, both the capacity and mean mutual information
are shown in Fig. 7.

As shown in Fig. 7, there are a few fluctuations which we believe
to be due to the randomness of the spikes at the input of a myelinated
axon. The mutual information increases in a way that resembles a
logarithmic curve, similar to the mean shift in amplitude from Fig. 5(a)
and corroborates findings from Veletić et al [33], [36]. The authors
showed a similar growth of channel capacity (bits), and information
rate (bits per second) which is proportional to capacity values for
bipartite synaptic connections.

D. Network Analysis

When part of a larger network, neurons can receive stimuli from
several other neurons and pass this information down to many other
neurons as well characterising a multiple-input and multiple-output
(MIMO) communication channel [37]. For our network analysis, we
arranged 27 neurons in a 3× 3× 3 cubic structure, with vertical and
horizontal connections, but not diagonals; this was a design choice to
avoid too much noise at higher spike firing frequencies and still takes
advantage of a good connectivity scheme. As with any stochastic
system, it is not ideal to force a system’s behaviour into a deterministic
model, where we need to account for inherent randomness. In this
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Fig. 10. Raster plots for different myelination indices showing how capacity is degrated and then regenerated as demyelination and remyelination
take place over time.

scenario, the system is our network and as the demyelination gets
worse, the spike-firing pattern and rate is negatively compromised.
In this scenario, all 27 neurons are demyelinated at the same time
and the same proportion, to mimic the process of demyelination for
the calculation of ιmy , where all neurons in the field of view are
demyelinated together.

1) Distribution Fitting: Several works in the literature have
hypothesised that neurons follow a Poisson process when firing
individually, but this may not be the case depending on the connectivity,
stimulus and neuronal structure [38]. To assess these conditions,
we turn to distribution fitting to help us understand how those
differences affect the network as a whole and to reproduce its
behaviour. This modelling technique is most commonly done by
applying the Kolmogorov–Smirnov (KS) test for goodness of fit [39].
Once the best fit is found for the data, both the histogram of the real
data and the probability distribution function, fx, of the best-fitted
distribution are plotted together as shown in Fig 8.

Full myelination in Fig. 8(a) shows similarities to the findings
by Platkiewicz and Brette [40] on the threshold for spike initiation
which suggests that our results for different levels of demyelination
can be a good representation for the validity of in vivo and in
vitro experiments. Furthermore, we have also found strong similarity
between our results in Fig. 8(b) and the results presented by Levine
and Shefner [41]. Visually, the highly skewed distribution of their
data resembles our findings for a Noncentral F distribution (n.c.f.)
at full myelination. As for the spiking rate, these results suggest our
models offer good approximations to provide complementary analysis
tool of understanding internal signal propagation properties of the
neurons under de/remyelination.

2) Spiking Rate and Interspike Intervals (ISI): One of the
first things to indicate changes have happened in the neuronal
communication channel is the spiking rate and the ISI. The spiking
rate changes with the intensity of the stimulus as a way of encoding
and modulating the stimulus with different firing frequencies. However,
as neurons inside a network start to attenuate the signal or not pass
it along altogether, it affects the rate with which the information is
transferred within the network.

To understand what happens to the overall spiking rate inside a
network, we decided to calculate its mean and standard deviation as
the myelination index changed. As aforementioned in Section II, the
myelination index was calculated for several neurons within the field
of view for each cortical slice. For that reason, we chose to vary the
index and see its effect on the entire network as depicted in Fig. 9.

As expected, Fig. 9(a) shows an increase in the spike firing rate
as the myelination index increases. From myelination index of 0.375
onwards it is clear how it increases as a logarithmic-shaped curve,
similar to the relative mean amplitude shift, δv , from Fig. 5(a).

However, there is barely any difference for the three lowest index
points. This is an interesting finding from the point of view of
communication performance, where myelination index ιmy lower
than 40% results in information that may be degraded to their worst
levels and this change does not differ all the way to the level of 15%.
In Fig. 10, it is possible to follow the visual decrease in spiking activity
as demyelination progresses up to a point when the remyelination
takes over and the restoration of several axonal pathways returns to
propagate the action potentials. As the spiking rate is visually affected,
so is the channel capacity which follows a similar behaviour as the
one depicted in Section III-C, Fig. 7.

Researchers have already shown that action potentials are broadened
and the conduction velocity supported by the saltatory nature of the
conduction of neuronal potential is prone to failure as the myelin
sheath gets more and more damaged [27], [32], [42]. All of the
results available in the literature help support our claim that the
frequency-dependent spiking activity is highly correlated to the level
of demyelination which eventually plateau in both ends, as shown
in Fig. 9, where values of ιmy less than 0.4 (lower index band) and
greater than 0.7 (upper index band) show very subtle variations in
comparison to values between 0.4 and 0.7 (middle index band).

IV. CONCLUSION

In this work, we have proposed a new hybrid computational
simulation and experimental model to analyze signal propagation along
neurons as they undergo demyelination and remyelination. We have
analysed the effects of demyelination for three different levels and this
includes (1) a single compartment within an axon, (2) bipartite synapse
to understand how signal propagation changes as they propagate to
the post-synaptic neuron and, (3) the impact of de/remyelination on
a neuronal network. Our computational simulations were based on
data from wet-lab experiments that used LPC to induce demyelination
in slices of the cortical regions of the brain. The results from our
computational simulations validated other findings from the literature
that suggested the neuronal communication is indeed affected by
demyelination. This analysis is based on developing a computational
simulation model proposed by Hodgkin-Huxley and integrating it
with signalling behaviour that is affected by the changes in the
myelin sheaths. Our correlated analysis to the results from literature
includes the changes in the amplitude and mean-shift, as well as
capacity of information bits propagated between neurons, and the
firing spike rate within a network of neurons as they undergo
demyelination and remyelination. These approaches could pave the
way for novel analytical techniques of neurons that are affected by
diseases and their impact on their communication behaviour, by linking
the results from wet-lab experiments that can feed into computational
simulation models. This in turn can minimize the need for specialized
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experimental equipment that is needed to investigate changes in the
communication behaviour, where the simulation model can provide
very fine-grain signalling properties down to the compartment level,
as well as between neurons, all the way up to the scale of the network.
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