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ABSTRACT2

High-frequency firing activity can be induced either naturally in a healthy brain as a result of the3
processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic4
seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can5
be used to design spike filters, attenuating high-frequency activity in a neuronal network that can6
be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a7
reconfigurable filter design built from small neuronal networks that behave as digital logic circuits.8
We developed a mathematical framework to obtain a transfer function derived from a linearization9
process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the10
output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of11
the analysis, the analytical model showed similar levels of attenuation in the frequency domain12
when compared to computational simulations by fine-tuning the synaptic weight. The proposed13
approach can potentially lead to precise and tunable treatments for neurological conditions that14
are inspired by communication theory.15

Keywords: neuron, hodgkin-huxley, linear model, transfer function, systems theory, epilepsy, filter.16

1 INTRODUCTION

Seizure dynamics with either spontaneous and recurrent profiles can occur even in healthy patients during17
the processing of sensory stimuli or it could manifest itself as an uncontrolled synchronous neural activity18
in large areas of the brain (Jirsa et al., 2014). Any disruption to the mechanisms that inhibit action potential19
initiation or the stimulation of processes that facilitate membrane excitation, can prompt seizures. Tackling20
this disease efficiently is an existing clinical issue where new approaches are constantly being investigated21
in order to provide precise and reliable strategies in inhibiting or disrupting seizure-triggering populations22
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of neurons. For example, controlling neuron firing threshold can most likely prevent seizure activity, which23
can often be achieved at a single neuron level (Scharfman, 2007).24

The development of techniques for the treatment of this type of neurodegenerative disorder is challenging25
not only due to the complexity of the brain function and structure but also as a result of the invasiveness and26
discomfort caused by today’s most common neurostimulation or surgery approaches (Rolston et al., 2012).27
However, due to the lack of success in non-invasive approaches, the immediate future epilepsy treatment28
will still see invasive methods. This approach must achieve population-level control with state-of-the-art29
technology in not only neuroengineering but must also integrate other disciplines. Recent advancements in30
nanotechnology, for instance, have been enabling the development of novel devices at the nano-scale that31
are capable of improving bio-compatibility. Nanotechnology-based treatment also includes advantages in32
the treatment precision, patient comfort as well as longer treatment lifetime. However, there still remain33
numerous challenges in the use of nanotechnology. For example, the passage of chemicals through the34
blood-brain barrier (BBB) is among the many challenges that disrupt the efficiency of nanoparticles-35
mediated drug delivery functioning. Challenges still remain as to how nanoparticles that pass through36
the BBB will diffuse towards specific neural populations. However, if the drug-loaded nanoparticles can37
be delivered at sufficient concentrations and accurately to a specific location, this can influence neural38
activities (Bennewitz and Saltzman, 2009; Veletić et al., 2019). As an example, drug delivery targets39
specific neurodegeneration promoting factors (Feng et al., 2019) by performing a drug-induced control over40
intracellular, extracellular and synaptic properties that regulate spiking activity (Blier and De Montigny,41
1987).42

Previous studies on the firing response of neurons have investigated the filtering capabilities either due to43
realistic synaptic dynamics (Brunel et al., 2001; Moreno-Bote and Parga, 2004) or by naturally manipulating44
the resting potential of voltage-dependent active conductances of a neuron enhancing its temporal filtering45
properties (Fortune and Rose, 1997; Motanis et al., 2018). On the other hand, existing analyses do not46
account for the many molecular control mechanisms that may influence the synaptic activity, e.g. drug. In47
the case of seizures, the understanding of the drug-induced firing response may allow further analysis on48
the impact of high-frequency firing on the neural tissue as well as how to desynchronize or slow it down.49
Frequency-domain analysis has been performed on top of linear models of the Hodgkin-Huxley (HH)50
formalism to investigate not only the transmission of information through the use of subthreshold electrical51
stimulation (Khodaei and Pierobon, 2016) but also the influence of axonal demyelination on the propagation52
of action potentials (Chaubey and Goodwin, 2016). Although Hodgkin-Huxley is not the only neuron model53
available in the literature, it is one of the most plausible models for computational neuroscience (Long and54
Fang, 2010). Other proposed models are, for example, integrate-and-fire, Izhikevich and Fitzhugh-Nagumo55
models (Mishra and Majhi, 2019).56

The manipulation of cellular activity, such as neuronal spiking activity, using molecules complexes to57
mimic logic gates and transistors has also been proposed in the literature. One example is the work of Vogels58
and Abbott (2005), in which the propagation of neuronal signals in networks of integrate-and-fire models59
of neurons was investigated and they found that different types of logic gates may arise within the network60
by either strengthening or weakening specific synapses. Goldental et al. (2014) used identical neurons61
to propose dynamic logic gates that work based on their historical activities, interconnection profiles, as62
well as the frequency of stimulation at their input terminals. In our previous works (Adonias et al., 2019;63
Adonias et al., 2020), we developed several logic gates arranged in groups of three heterogeneous models of64
neurons, with two working as inputs and one as the output, and performed a queueing-theoretical analysis65
aiming at the study of such a complex network as a single element behaving as the collective of those66
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cells. Irrespective of the tremendous efforts from the scientific community, these works do not provide a67
framework of reconfigurable circuits that could pave the way for more sophisticated approaches for neuron68
control. Further investigation of novel neuronal electronic components constructions is needed to develop69
bio-compatible and reliable solutions that can address defective neuronal networks. While the scientific70
community has been witnessing remarkable progress in the manipulation and engineering of the behavior71
of mammalian cells (Lienert et al., 2014), the existing models do not yield analytical expressions that could72
be used to model drug-induced filtering capabilities of a neuron and, in particular, incorporating computing73
paradigms. The main focus of this work is to lay the ground-work of analytical models for digital filters74
that are designed and engineered into neurons, potentially leading to the development of novel epilepsy75
treatments.76

W1(s)

W2(s)

W3(s)Σ

Figure 1. Engineered neuronal digital logic circuit, where each gate is composed of three neurons and
each block Wi(s) represents one neuron as a transfer function to enable communication metric analysis .

In this work, we propose a mathematical framework aiming at the interpretation of the filtering capabilities77
in small populations of neurons that are engineered into a logic circuit (Figure 1). The circuit aims to78
reduce the firing rates from its inputs by performing the binary logic as well as integrating reconfigurability,79
where the different logic circuit arrangements, as well as logic gate types, can be tuned to change the80
filtering properties. To achieve that in our mathematical framework, we modify parameters on the logic81
circuit transfer function, derived from the linear interpretation of the Hodgkin-Huxley neuronal model.82
These parameters are related to neuronal and synaptic properties of a neuro-spike communication, such83
as conductances and weight, and can potentially be achieved through the sustained administration of a84
specific drug. Our mathematical framework is, from an application point-of-view, a design platform for85
neuroscientists in creating filtering solutions for smoothing out the effects of neurological diseases that86
require the minimization of firing activity. The framework models the effects of drug-induced molecular87
changes in models of neurons aiming to control the neuronal activity of a synthetic engineered cell, however,88
the fabrication and specifications of such a drug are out of the scope of this paper. The contributions of this89
paper are as follows:90

• Neuronal logic circuits are built using computational models of neurons and this arrangement is91
expected to be capable of acting as digital filters, converging four inputs into one output with a shift in92
attenuation driven by modifications to the synaptic weight.93

• A mathematical framework is proposed paving the way for the design of neuronal digital filters to94
help suppress the destructive effects of neurodegenerative diseases. This framework should enable95
the relationship between biophysical models and drug design, facilitating scientists control over the96
behavior of the filters.97

• Analysis of the performance of the neuronal filters in terms of accuracy and of signal power98
attenuated by the circuit. This analysis gives an insight into how parameters such as weight or99
frequency at the input would affect the performance of such filters.100
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The remainder of this paper is as follows, Section 2.1 briefly describes how neurons differ between each101
other and how they communicate with one another. In Section 2.2, we explain how neurons can function102
as non-linear electronic circuits based on the seminal work of Hodgkin and Huxley (1952) and we also103
describe the process of linearization aiming to derive a transfer function of the filter model. The filter104
design is explained in Section 2.3 which also covers how neurons are represented as compartments and105
connected to form logic gates and, consequently, to form logic circuits. In Section 3, we present the results106
that are discussed in Section 4 and, finally, the conclusions are presented in Section 5.107

2 MATERIAL AND METHODS

2.1 Neuronal Communication108

To be able to synthetically implement complex functions inside the brain, we must control how the109
neurons exchange information using the propagation of action potentials inside a network of neurons. The110
number of excitatory and inhibitory connections between neurons determines the spatio-temporal dynamics111
of the action potentials propagation (Zhou et al., 2018). Efficient coding and modulation of neuronal112
information have been used to implement bio-computational approaches in our previous work (Adonias113
et al., 2020). Bio-computing can be created from neuronal networks that are engineered to function as logic114
circuits through controlling the neuro-spike communication and curbing the signal propagation dynamics115
between the neurons.116

We aim to investigate the neuronal and synaptic properties in constructing logic circuits that perform the117
filtering of spikes in small populations from the somatosensory cortex. The cortex is responsible for most118
of the signal processing performed by the brain and comprises a rich variety of morpho-electrical types of119
neuronal and non-neuronal cells. We will take into account these characteristics in the construction of our120
mathematical framework that is used to design the circuits.121

2.1.1 Properties of a Neuron122

Neurons are divided into three main parts: dendrites, soma and axon. Dendrites receive stimuli from other123
cells and the way these dendritic trees are projected onto neighboring neurons in a network helps to classify124
neuron morphological types. The axon passes stimuli forward to cells connected down the network through125
its axon terminals and the soma is the main body of the neuron. Each neuron’s response to a stimulus will126
dictate the electrophysiological neuron type. The soma is where most proteins and genes are produced and127
where stimuli are generated and fired down the axon.128

Besides the way dendrites are projected, the proteins and genes that neurons express and their129
morphological and electrophysiological characteristics are important for the classification of different130
types of neurons. One of the most comprehensive works on neuronal modelling, by Markram et al. (2015),131
classifies the neurons from the rat’s somatosensory cortex based on their morpho-electrical properties132
(morphological and electrical characteristics) as well as the cortical layer they belong (columnar and133
laminar organization).134

2.1.1.1 Morpho-electrical Characteristics135

Even though all neurons used in this work can assume different morphological structure, it is exactly by136
analyzing their axonal and dendritic ramification that we can have a good enough categorization of their137
respective morphological types. Regardless of their types, neurons in the cortical layer are considered of138
small sizes (8 - 16µm). Furthermore, inhibitory neurons can be better identified by their axonal features139
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while excitatory neurons can be more easily classified based on their dendritic features (Markram et al.,140
2015). Each morphological type (m-type) can fire different spiking patterns and this may affect the gating141
capabilities of neurons due to the fluctuations on precise spike timing. Markram et al. (2015) categorized142
11 different electrical types (e-types) of neurons, hence, 11 different ways of firing a spike train generated143
in response to an injected step current.144

2.1.1.2 Cortical Organization145

The cerebral cortex comprises six distinguished horizontal layers of neurons, with each layer having146
particular characteristics such as cell density and type, layer size and thickness. This horizontal147
configuration is also known as a “laminar” organization, where the layers are identified as (1) Molecular148
layer, which contains only a few scattered neurons and consists mostly of glial cells and axonal and149
dendritic connections of neurons from other layers; (2) External granular layer, containing several stellate150
and small pyramidal neurons; (3) Pyramidal layer, contains non-pyramidal and pyramidal cells of small151
and medium sizes; (4) Inner granular layer, predominantly populated with stellate and pyramidal cells,152
this is the target of thalamic inputs; (5) Ganglionic layer, containing large pyramidal cells that establish153
connections with subcortical structures; and (6) Multiform layer, populated by just a few large pyramidal154
neurons and a good amount of multiform neurons, which sends information back to the thalamus. All155
layers may contain inter-neurons bridging two different brain regions.156

The neurons are not just stacked one on top of another suggesting a horizontal organization, indeed157
vertical connections are also found in between the neurons from either the same or different layers. This158
allows another type of classification known as mini-columns (also called, micro-columns) with a diameter159
of 30 - 50 µm and when activated by peripheral stimuli, they are seen as macro-columns, with a diameter160
of 0.4 - 0.5 mm (Peters, 2010). This will create network topologies with intrinsic characteristics, e.g.161
connection probabilities between neurons, that influence the signal propagation to converge into either a162
specific pattern or flow.163

2.1.2 Neuron-to-neuron Communication164

The communication between a pair of neurons is done through the diffusion of neurotransmitters in165
the synaptic cleft; this process is triggered by an electrical impulse reaching the axon terminals of the166
transmitting cell characterizing an electrochemical signalling process known as the synapse. Action167
potentials propagate down the axon of the pre-synaptic cell, which is the sender cell, and when reaching168
the axon terminals also known as pre-synaptic terminals, it triggers the release of vesicles containing169
neurotransmitters into the synaptic cleft, which is the gap between a pre- and a post-synaptic terminal,170
as illustrated in Figure 2. Those neurotransmitters will probabilistically bind to neuro-receptors located171
at the post-synaptic terminals, i.e. dendrites (Balevi and Akan, 2013), triggering the exchange of ions172
through the membrane that can either excite or inhibit the cell, depending on the type of neurotransmitters173
that were received. In our work, we focus on the synaptic weight between the pre- and post-synaptic174
terminals. The synaptic weight is a measure of how much influence the pre-synaptic stimuli have on175
the post-synaptic cell and it is known to have its value best approximated to the time integral of the176
synaptic conductance (Gardner, 1989). Furthermore, the value of synaptic conductance in the post-synaptic177
terminal is driven by the number of neurotransmitters bound to neuroreceptors (Guillamon et al., 2006).178
We illustrate the synaptic weight, in Figure 2, as red neurotransmitters which should have their release179
from the pre-synaptic terminals induced by the administration of a specific drug.180

In an excitatory synapse, the membrane potential of the post-synaptic cell, which rests at approximately181
−65 mV, will start depolarizing itself until it reaches a threshold, th, for action potential initiation. On the182
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Figure 2. Schematic of a synapse; action potentials traveling down the axon trigger the release of
neurotransmitters into the cleft between pre- and post-synaptic terminals, traveling towards neuroreceptors
on the other end leading to changes on membrane conductance that can either excite or inhibit the
post-synaptic neuron.

other hand, if the synapse is inhibitory, the membrane should get even more polarized making it nearly183
impossible for the cell to fire a spike and not allowing the propagation of any signal down the network184
from the inhibited cell. After reaching th, the membrane potential should increase towards a maximum185
peak of depolarization, and then the cell will start the process of repolarization towards its resting potential.186
For a brief moment, the potential inside the cell will cross the level of potential when at rest making187
the membrane hyperpolarized, which is a period known as the refractory period and it can be further188
subdivided as absolute and relative. The absolute refractory period (ARP) lasts around 1 - 2 ms during189
which the neuron is unable to fire again regardless of the strength of the stimuli; then, it is followed by190
the relative refractory period (RRP) during which a response in the potential of the cell may be evoked191
depending on the strength of the stimuli (Mishra and Majhi, 2019).192
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2.2 Electronic Interpretation of a Neuron Model193

The main structures of a neuron, previously mentioned in Section 2.1.1, can assume different shapes and194
spatial structures that play an important role in determining its input and output relationship. By sectioning195
the neuron into several compartment models, we are able to account for the influence that individual196
compartments have on the communication process of the neuron. Even though we consider the same197
value of resting potential for all compartments of the cell, there is some discussion on whether different198
compartments have different potentials when at rest (Hu and Bean, 2018).199

We aim to develop a transfer function for the neuron-spike response, or output (V (s)), to a particular200
spike input (I(s)). Using a transfer function for each neuron which is represented as a single compartment,201
we are able to efficiently associate the configuration of the filters with the structure of the neural network as202
well as the individual characteristics of each neuron. On top of that, we also are able to focus on frequency203
domain for an effective spike firing filtering. We rely on the electronic interpretation of the Hodgkin-Huxley204
model of neuron action potentials, which is made based on the neuronal cable theory assumptions on the205
static ionic channels conductance. In this section, we provide the details of the development of the transfer206
function, which is built on the linearization process of the Hodgkin-Huxley neuron model.207

2.2.1 Hodgkin-Huxley Formalism208

As aforementioned in Section 1, neurons can perform spike filtering tasks either by manipulating ionic209
conductances, such as sodium and potassium conductances, from within the cell (Fortune and Rose, 1997)210
or by working on the extracellular environment where the synapse occurs (Brunel et al., 2001; Moreno-Bote211
and Parga, 2004). Furthermore, filtering capabilities may vary according to the non-linearities of the212
neuron’s activity and action potential propagation. In order to design an efficient filtering process, we will213
need to eliminate the non-linearities so we can directly link neurons properties to the filtering behavior214
and adjust these properties according to a desired filtering performance level. We consider the Hodgkin215
and Huxley non-linear model (Pospischil et al., 2008) as our basic model since it perfectly describes the216
influence of ionic conductance and synaptic conductance in the propagation of the action potentials. We217
assume that parts of the neuron will constitute a compartment, which results in the electric circuit in Fig. 3A218
when applying the conventional neural cable theory.219

Iext

gNa gK gl

C

ENa EK El

extracellular

membrane
(lipid bilayer)

intracellular

Na+K+K+

Na+

K+Na+

K+K+

ionic
gates

A B

Figure 3. Hodgkin-Huxley (HH) model: (A) Electronic circuit representation and (B) Equivalent biological
HH compartment; the lipid bilayer is modeled as C, the conductances g represent how open or close the
ionic gates are and the gradient of ions between the intra- and extra-cellular space define the reversal
potentials E.
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Figure 3 depicts C as the membrane capacitance, each voltage-gated ionic channel represented by its220
respective conductances gNa and gK and the leak channel by the linear conductance gl. The membrane221
capacitance is proportional to the surface area of the neuron and, along with its resistance, dictates how fast222
its potential responds to the ionic flow. The ratio between intra- and extra-cellular ions define the reversal223
potentials ENa,K, l establishing a gradient that will drive the flow of ions (Barreto and Cressman, 2011).224

When an external stimulus, Iext, is presented, it triggers either the activation or inactivation of the ionic225
channels that allow the exchange of ions that result in depolarization (or hyperpolarization when inhibitory)226
of the membrane of the cell. These dynamics are modeled as227

C
dV
dt

= −Il − INa − IK + Iext, (1)

where V is the membrane potential and Ix are the ionic currents where x represents either a specific ion228
(Na, K) or the leak channel (l). Those currents are described as229

Il = gl(V − El), (2)

INa = gNam
3h(V − ENa), (3)

IK = gKn
4(V − EK), (4)

where m and h are the activation and inactivation variables of the sodium channel, respectively, and n is the230
activation variable of the potassium channel, following the conventional approach described by Hodgkin231
and Huxley (1952) and stated as232

dm
dt

= αm(V )(1−m)− βm(V )m, (5)

dh
dt

= αh(V )(1− h)− βh(V )h, (6)

dn
dt

= αn(V )(1− n)− βn(V )n, (7)

in which the values of the rate constants αi and βi for the i-th ionic channel can be defined as233

αm =
0.1(V + 40)

1 + e−(V+40)/10
, (8)

βm = 4e−(V+65)/20, (9)

αh = 0.07e−(V+65)/20, (10)
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βh =
1

1 + e−(V+35)/10
, (11)

αn =
0.01(V + 55)

1− e−(V+55)/10
, (12)

βn = 0.125e−(V+65)/80. (13)

The membrane capacitance is proportional to the size of the cell, and on the other hand, the bigger234
the cell diameter, the lower the spontaneous firing rate (Sengupta et al., 2013). Furthermore, each ionic235
channel can be studied as containing one or more physical gates which can assume either a permissive or236
a non-permissive state when controlling the flow of ions. The channel is open when all gates are in the237
permissive state, and it is closed when all of them are in the non-permissive state (Baxter and Byrne, 2014).238

2.2.2 Hodgkin-Huxley Linear Model239

In order to derive a transfer function for the Hodgkin-Huxley model, we must consider each neuron as240
a system that is linear and time-invariant (LTI). If the system is non-linear, then a linearization process241
should be done before any frequency analysis is performed. For a more detailed analysis on the procedures242
for linearization of the Hodgkin-Huxley model, the reader is referred to (Koch, 2004; Mauro et al., 1970;243
Sabah and Leibovic, 1969; Chandler et al., 1962).244

The linearization process requires that we reconsider the electronic components in each neuron245
compartment to adequately eliminate trivial relationships. Membranes with specific types of voltage-246
and time-dependent conductances can behave as if they had inductances even though neurobiology247
does not possess any coil-like elements. This modification will transform the behavior of non-linear248
components towards linearization, resulting in a proportional relationship between the voltage and current249
changes (Koch, 2004).250

Every linearization process is performed for small variations around a fixed point, hereafter denominated251
by δ, and in the case of the Hodgkin-Huxley model, this fixed point should be the steady-state (resting252
state) of the system. Because the sodium activation generates a current component that flows in an opposite253
direction compared to that of a passive current, the branch concerning the sodium activation should254
have components with negative values while the branches regarding potassium activation and sodium255
inactivation should have components with positive values (Sabah and Leibovic, 1969). The linear version256
of the circuit of Figure 3A is illustrated in Figure 4, where C is the membrane capacitance, gn, gm and gh257
are the conductances of the inductive branches connected in series with their respective inductances Ln,258
Lm and Lh derived from the linearization process and GT = GL +GK +GNa is the total pure membrane259
conductance.260

Let us consider the membrane potential deviation, δV , around some fixed potential. Thus, we can express261
the response of the circuit to small-signal inputs as262

C
dδV

dt
= Iext − δIl − δIK − δINa, (14)

where δIl,Na,K are current variations at any given steady-state and can be defined as263
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C GT

gn

Ln

gm

Lm

gh

Lh

Iext

Figure 4. Hodgkin-Huxley linear circuit model representation.

δIl = glδV, (15)

δIK = GKδV + 4gKn
3
∞(V − EK)δn, (16)

δINa = GNaδV + 3gNam
2
∞h∞(V − ENa)δm+ gNam

3
∞(V − ENa)δh, (17)

where GK,Na are pure conductances of potassium and sodium and GL the pure leak conductance expressed264
as265

GL = ḡl, (18)

GK = ḡKn
4
∞, (19)

GNa = ḡNam
3
∞h∞, (20)

where ḡK,Na are the maximum attainable conductances, and δn, δm and δh are small variations around the266
steady-state of the activation and inactivation variables n, m and h which are written as267

dδn

dt
=
dαn
dV

δV − (αn + βn)δV − n∞
(
dαn
dt
− dβn

dt

)
δV, (21)

dδm

dt
=
dαm
dV

δV − (αm + βm)δV −m∞
(
dαm
dt
− dβm

dt

)
δV, (22)

dδh

dt
=
dαh
dV

δV − (αh + βh)δV − h∞
(
dαh
dt
− dβh

dt

)
δV, (23)
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as a function of the derivative of the rate constants αn,m,h and βn,m,h, and n∞, m∞ and h∞ are the268
steady-state values of m, n and h defined as269

n∞ =
αn

αn + βn
, (24)

m∞ =
αm

αm + βm
, (25)

h∞ =
αh

αh + βh
, (26)

and the conductances, gn,m,h, and inductances, Ln,m,h, of the inductive branches are defined as270

gn =

4ḡKn
3
∞(V − EK)

[
dαn
dV

∣∣∣∣
r

− n∞
d(αn + βn)

dV

∣∣∣∣
r

]
αn + βn

, (27)

Ln =
1

gn(αn + βn)
, (28)

gm =

3ḡNam
2
∞h∞(V − ENa)

[
dαm
dV

∣∣∣∣
r

−m∞
d(αm + βm)

dV

∣∣∣∣
r

]
αm + βm

, (29)

Lm =
1

gm(αm + βm)
, (30)

gh =

ḡNam
3
∞(V − ENa)

[
dαh
dV

∣∣∣∣
r

− h∞
d(αh + βh)

dV

∣∣∣∣
r

]
αh + βh

, (31)

Lh =
1

gh(αh + βh)
. (32)

Each channel has a probability of being open which represents the fraction of gates in that channel that271
are in the permissive state (Gerstner et al., 2014). The gating variables are described by the coupling of272
the conductances gn,m,h and their respective inductances Ln,m,h which are functions of the rate constants273
representing the transition from permissive to non-permissive state, α(V ), and vice-versa, β(V ) which274
should take a short period of time, τ = [α(V ) + β(V )]−1, to eventually reach a steady-state value, α∞ and275
β∞ (Koslow and Subramaniam, 2005).276

Borrowing concepts from systems theory such as frequency analysis of LTI systems, as a standard277
procedure for the analysis of linear differential equations as simpler algebraic expressions, see (Nise, 2015),278
and the linearization of non-linear systems for the reason previously mentioned at the beginning of this279
section, we derived a transfer function in the Laplace domain for the linear system from Figure 4. The280
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relationship between the different elements of the circuit and their respective impedance and admittance281
values from the Laplace transforms are depicted in Table 1.282

Table 1. Impedance relationships for capacitors, resistors and inductors.

Component Impedance Admittance
Capacitor

1

Cs
Cs

Resistor
R G =

1

R

Inductor Ls
1

Ls

Therefore, the relationship between the output and the input of the system in the frequency domain is283
expressed as284

V (s)

I(s)
=

s3LnLmLh
{LnLmLh[s4C + s3(GT + gn + gm + gh)] + s2(LmLh + LnLh + LmLh)}

(33)

where s = σ + jω is a complex variable; j =
√
−1 and ω = 2πf , where f is the frequency in Hertz. Let285

us rewrite Eq. (33) as286

W (s) = C−1
s

s2 + sC−1(GT + gn + gm + gh) + C−1(L−1m + L−1n + L−1h )
. (34)

Now, denoting γ = GT + gn + gm + gh and λ−1 = L−1n + L−1m + L−1h and performing a few algebraic287
manipulations, we end up with the following transfer function for the filter model288

W (s) = γ−1
C−1γs

s2 + C−1γs+ λ−1C−1
. (35)

For frequency response analysis, we observe the behaviour of W (jω), i.e. substitute s = jω. For ω → 0,289
W (jω) behaves like ω; for ω → ∞ it behaves like 1

ω+1 , i.e. in both cases it tends to zero, and hence290
demonstrates the behaviour of a second-order band-pass filter (BPF). It corresponds to the canonical form291

K(ω0/Q)s

s2+(ω0/Q)s+ω2
0

where K = γ−1 is the gain, Q = γ−1
√
Cλ−1 is the selectivity and ω0 =

√
λ−1C−1 is292

the peak frequency of the filter. This agrees with findings from previous literature on the matter (Plesser293
and Geisel, 1999) that concluded the periodicity of a stimulus is optimally encoded by a neuron only in a294
specific spectral window.295

2.3 Transfer Function Filter Design296

Given the transfer function for a neural compartment in the previous section, we now progress towards297
a transfer function for the spike filter. The filter is comprised of neurons that are particularly chosen to298
have a network that will behave as a digital gate and a small population that will behave as a circuit that299
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implements the filter. Our aim is to capture the relationship between compartments as well as neuron300
connections so we can build a transfer function for the filter while considering neuron connection variables301
(synaptic conductance and synaptic weight) that allow easy reconfiguration of the filtering process. The302
linearization process combined with the analysis of the neuron communications is the driver of the filtering303
process, which also allows the derivation of a filter transfer function which is detailed below.304

2.3.1 Biological Logic Gates and Circuits305

Synthetic biology is the technology that allows the control of the neurons’ internal process in order to306
construct non-natural activity and functioning of neurons, e.g. logic gates (Larouche and Aguilar, 2018).307
Synthetic logic operations inspire scientists to address the challenges posed by novel synthetic biomedical308
systems, such as biocompatibility and long-term use.309

Circuit BCircuit A Circuit CA

B

A1
A2

Figure 5. (A) Schematic of circuits A, B and C and (B) The connection of AND gates in cascade to circuit
A. A1 refers to the arrangement described by a single AND gate connected to the output of the circuit A
and A2 refers to another AND gate connected to the output of A1 arrangement, i.e. two AND gates in
cascade with circuit A. Analogous nomenclature is employed for both circuits B, as in B1/B2 and C, as in
C1/C2.

Figure 5A shows the three types of the circuit we have built and analyzed in this work. From circuits A to310
C, the number of OR gates is decreased; when compared to AND gates, OR gates are quite permissive. In311
our previous study312

Given that several factors such as connection probability, type of cell, and different numbers of313
compartments (as discussed in Section 2.3.2) among different types of neurons may influence its gating314
capabilities. This variation on the quantity of compartments could also lead to variations on periods for315
the action potential to reach the post-synaptic terminals and start the synapse process. Furthermore, cells316
with bigger sizes of soma may take more time and amount of stimuli to reach threshold for action potential317
initiation (Sengupta et al., 2013), thus, also affecting the way a neuronal logic gate would work regarding318
a specific morphological neuronal type. For that reason, it is safe to keep two cells fixed as inputs (as319
illustrated in Figure 1) and then deploy an arrangement with which its performance has been previously320
assessed, allowing us to be fairly certain about how the synthetic gate or circuit should behave. Each neuron321
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is represented by a block, Wi(s) for the i-th neuron, and its representation in the frequency domain is322
proposed in Equation (35) and further detailed in Subsection 2.3.2.323

2.3.2 Compartmental Modelling324

Neurons are very complex structures with numerous ramifications and several factors that contribute325
to their highly non-linear dynamism. Aiming to make the comprehension of such a complex electrical326
behavior easier, one employs a widely used technique called “compartmental modelling”. Since different327
neurons have different morphologies, the mechanism of determining the number of compartments will328
be based on estimating the length of a specific neuronal structure. For instance, a varying length of axon,329
which will reflect in different quantities of compartment in series, where we will have a fixed size for330
each segment of the axon representing one compartment. This is a very natural and elegant way to model331
dynamic systems as multiple interconnected compartments where each compartment is described by its332
own set of equations, carrying the influence of one compartment to the next reproducing the behavior of333
the whole neuron.334

Observing the neuron as a set of compartments described by transfer functions equivalent to that of (35),335
the neuronal morphology of a pyramidal cell, as illustrated in Figure 6A, (or any cell for that matter) can336
be modeled as an electrical circuit as shown in the topology of Figure 6B; the dendritic ramifications are337
modeled as a combination of serial and parallel connections terminanting in the soma which is connected to338
the axon modeled as a series of compartments; its interpretation in terms of filtering is given in Figure 6C.339
The effect of a serial connection of two compartments is one of set-intersection when observed in the340
frequency domain: two bandpass filters in series pass only the frequencies that exist in both of their341
passbands. On the other hand, a parallel connection has a set-union effect, a parallel connection of filters342
will pass all the frequencies in both their passbands. As such, a large network (tree) of such compartments343
with similar bands combined in a cell, and cells combined in a group of cells will exhibit asymptotic344
bandpass behavior as well.345

A

BC

A∩B

(A∩B)∪CA B C

Figure 6. Compartmental neuron representation: (A) Natural topology of a pyramidal cell, (B) Electronic
circuit compartments and (C) Effects of serial and parallel connections between compartments.

Every single compartment, each represented by one transfer function, is grouped in trees of three cells346
(Figure 1) forming a logic gate; the three gates are connected into a tree of their own, as illustrated in347
Figure 5A, forming a logic circuit. All of the cells are represented with the same form of the transfer348
function,349
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Wi(s) = ζiγ
−1
i

C−1i γis

s2 + C−1i γis+ λ−1i C−1i
, i = 1, . . . , 9 (36)

with symbols defined previously, and a new parameter ζi describing the synaptic weight for the ith cell; ζi350
acts as a tunable gain for the neurons.351

Using the parameters from (Mauro et al., 1970) aiming to keep them within the physically sensible orders352
of magnitude, we obtain the reference values of γ̄ = 0.0024, λ̄ = 119, C̄ = 1 and ζ̄ = 1, and the values353
for 9 cells were generated multiplying these reference values by a uniformly distributed random variable354
in the range (0, 1). This kind of distribution is widely used to describe experiments where an arbitrary355
result should lie between certain boundaries, and in our case boundaries are defined by reasonable orders356
of magnitude around values made available by previous studies; keeping exactly the same parameters for357
all cells in the cascade is not realistic. The total transfer function of this system is358

W = ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9, (37)

and its frequency response (Bode plot) for the relevant range of frequencies in our applications (Wilson359
et al., 2004) is shown in Figure 7B.360
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Figure 7. Bode plots: (A) Single second-order bandpass filter approximation and (B) Filter structure from
Eq. (37)

Let us now observe three cases concerning the choice of ζi values. In the first case, we keep all of them361
at unity and consider it our base case for this part of the analysis (and to keep it aligned with the rest of362
the paper, we call it Circuit B). In the second case, we double the values of ζ3 and ζ6, which corresponds363
to the manipulation of the output cell for the two input gates in Circuit A. In our linear model, this is364
equivalent to doubling ζ9 and leaving everything else intact. Finally, in the third case, we manipulate the365
output cell of the last gate by halving its synaptic conductance (Circuit C). This effectively means that the366
three cases are ζ9B = 1, ζ9A = 2 and ζ9C = 1/2, respectively. Since the tunable gain ζ9 of the gate W9, is367
the tunable gain of the whole system W according to (37), its change would offset the frequency response368
along the ordinate axis, i.e. lower gains (lower conductance) would suppress the unwanted frequencies in a369
better way, while higher gains would do the opposite. This is demonstrated in Figure 7A. The process of370
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the analysis is summarized in Algorithm 1 and a summary with all elements from both the original and371
linearized versions of the Hodgkin-Huxley as well as the transfer function model is presented in Table 2.372

1 Initialize:
2 Γ = {γ1, . . . , γ9} ∈ (0, γ̄)
3 Λ = {λ1, . . . , λ9} ∈ (0, λ̄)
4 C = {C1, . . . , C9} ∈ (0, C̄)
5 Z = {ζ1, . . . , ζ9} ∈ (0, ζ̄)
6 for 1 ≤ i ≤ 9 do
7 Wi ← ζiγ

−1
i

C−1
i γis

s2+C−1
i γis+λ

−1
i C−1

i

8 end
9 WB ← ((W1 +W2)W3W7 + (W4 +W5)W6W8)W9

10 WA ← 2WB
11 WC ← 0.5WB
12 Plot frequency response: WA,WB,WC

Algorithm 1: Linear model filter analysis

Alternatively, as we suggested earlier, a single transfer function of a compartment serves as an373
approximation of the entire system due to the effects of repeated bandpass filtering in Figure 6C. In374
such case, we observe 20 dB/decade slope in the Bode plot shown in Figure 7A (as compared to 80375
dB/decade slope in Figure 7B) and the same offset of 20 · log10 2 ≈ 6 dB in case of halving/doubling the376
synaptic weight. Since the filter is of a band-passing nature, it is only natural that, around the resonant377
frequency, lower and higher frequency amplitudes should be ideally attenuated towards zero. Thus, it is378
worth mentioning that in both cases depicted here, the part of the frequency response with the cusp is at379
very low frequencies, so it is not visible in the relevant part of the spectrum. As such, the filter behaves as a380
low pass filter for all practical considerations.381

3 RESULTS

In this section, we discuss the simulation results concerning the reconfigurable logic gates as well as the382
circuits. For all simulations, intrinsic parameters of the cell were kept at their default values (such as the383
length and diameter of each of their compartments) meaning that nothing concerning their morphological384
properties was changed, the spike trains fed to the input of the circuits followed a Poisson process and385
the threshold for spike detection and data analysis was 0 mV where any potential higher than that in a386
specific time slot would be considered a bit “1”, characterizing the use of a simple On-Off Keying (OOK)387
modulation which was implemented where a spike is considered as a bit ‘1’ and its absence a bit ‘0’ in each388
time slot. The cell models and information on their respective connection probabilities between different389
pair of neurons were obtained from the work of Markram et al. (2015), and then we used NEURON and390
Python for simulation and data analysis (Carnevale and Hines, 2009; Hines et al., 2009). The source-code391
of our simulations is publicly available on a GitHub repository1.392

3.1 Reconfigurable Logic Gates393

In this work, we call “reconfigurable” logic gates, the gates that work by changing the synaptic weight394
between the connections of both input cells with the output cell in a neuronal logic gate structure. Aiming395

1 https://github.com/gladonias/neuronal-filters
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Table 2. Summary of elements described in the proposed model.

Element Description
C Membrane capacitance

gNa, gK , gl Sodium, potassium and leak conductances
ENa, EK , El Sodium, potassium and leak reversal potentials

Iext External stimulus

INa, IK , Il
Ionic current for the sodium, potassium and leak
channels

V Membrane potential
m,h Sodium activation and inactivation variables
n Potassium activation variable

α, β
Rate constants for m, h and n from permissive
to non-permissive state and vice-versa

δ Small variation around the steady-state
GT Total pure conductance

GNa, GK , GL Sodium, potassium and leak pure conductances

ḡNa, ḡK , ḡl
Maximum attainable sodium, potassium and
leak conductances

m∞, h∞, n∞ Steady-state values of m, h and n
gm, gh, gn Conductances of the inductive branches
Lm, Lh, Ln Inductances of the ionic paths

W Transfer function of the filter
K,Q, ω0 Gain, selectivity and peak frequency of the filter

ζ Synaptic weight

to measure individual gate accuracy, the spike trains in the inputs were randomly produced but we control396
their frequency variation, in other words, for each simulation, the frequency at all inputs was the same and397
any change in the frequency was performed for all inputs of the gates meaning that none of the simulations398
account for different frequency values between different inputs in a single simulation. The accuracy is399
a simple but powerful measure for the performance of the gates, with which we intend to analyze the400
effects of the dynamics of the cell on the output of the circuit when comparing this output with the ideal401
response of the circuit derived from its truth-table. The accuracy is calculated according to the following402
equation (Hanisch and Pierobon, 2017):403

A(E[Y ];Y ) =
P1,1 + P0,0∑

Y

∑
E[Y ]

PY,E[Y ]

, (38)

where PY,E[Y ] is the probability of Y given E[Y ] in which Y is the actual output and E[Y ] is the expected404
output and Y &E[Y ] ∈ {0, 1}. PY,E[Y ] resembles the conditional probabilities in a binary symmetric405
channel (BSC). Thus, P0,0 = 1− P1,0, and P0,1 = 1− P1,1. It is possible to calculate P1,1, for instance,406
by counting the number of bits there are for each input-output combination. In other words, considering407
#Bi,j the number of times a bit i was received when bit j was sent knowing that i& j ∈ {0, 1}, then408
P1,1 = #B1,1/(#B1,1 + #B0,1).409

Given the objective of obtaining a behavior similar to an OR gate, the synaptic weight should be set to410
0.06µS, meaning that the pre-synaptic stimuli will drive a higher influence on the depolarization of the411
post-synaptic cell. On the other hand, for an AND behavior, the weight is set to 0.03µS, which reduces the412
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influence of a single spike and look to a response of the post-synaptic neuron only when two spikes arrive413
very close to each other in terms of time. This is conducted so we have acceptable levels of accuracy when414
compared to the expected outputs of the gate.415
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Figure 8. Analysis on reconfigurable logic gates with neurons of types (A) L23-MC, L23-NBC and
L1-DAC and (B) L23-MC, L23-NBC and L1-HAC.

Figures 8 show similar responses when gates originally built to be of a specific kind. This means either416
OR or AND gates can change their configurations that drives their gating capabilities by modifying the417
synaptic weight between the connections of the input cells and the output cell. Although there is quite a418
visible difference between the performance of AND and OR gates, even at high frequencies (150 Hz), the419
accuracy of the reconfigurable logic gates remains above 80%.420

3.2 Neuronal Logic Circuits421

Once the reconfigurable behavior of the gates is assessed, they are connected to other gates to form a422
logic circuit. The performance is measured employing a ratio (frequency response), i.e. the number of423
spikes (bits ‘1’) in the output divided by the nominal input frequency, in Hertz. This ratio is also known as424
the magnitude, or gain when evaluating the data in decibels. Following the approach for individual gates,425
the inputs are random and the frequency is increased uniformly. Since the gates showed similar accuracy426
when increasing the input frequency, we picked the one analyzed in Figure 8A for our circuit analysis with427
a reconfigurable logic gate, modifying only the output gate’s synaptic properties.428

Figures 9A show the results for the circuits in Figure 5A. As expected, Circuit C has a stronger attenuation429
of the signals passing through it, and this is mainly due to the fact it is an arrangement with three AND430
gates and, based on the truth table, an AND gate only responds to stimuli if all its inputs are active at the431
same time. The magnitude in decibels shown in Figure 9B follow a standard presentation of the response432
of digital filters.433

In the non-linear case of the system, the filtering is even better than what the linear model would promise,434
i.e. the suppression of unwanted frequencies is better due to superexponential decay. Let us compare435
Figure 7B and Figure 9B. The linear model suggests that a constant difference of 6 dB is to be expected436
if the synaptic weight of the output cell is halved (or doubled), and a linear, constant amplitude drop. In437
the nonlinear model, we do observe a 20 dB/decade drop and 6 dB difference at relevant frequencies, but438
instead of a linear trend, we observe a convex response, which helps in attenuating high frequencies faster439
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Figure 9. Effects of dynamic changes to the synaptic weight in circuits A, B and C; (A) Frequency
response and (B) Magnitude in decibels.

than we would expect from the linear model. This is because the linear model is accurate in a neighborhood440
of the point at which it was linearized.441

Now, let us consider H(ν) as the response of an ideal low-pass filter, and W (ν) the response of the442
proposed neuronal filter, the counter-efficiency of W given H is calculated as443

ψ(W |H) =

∫ νc

0
|W (ν)−H(ν)| dν +

∫ νf

νc

|W (ν)| dν (39)

where νc is the cut-off frequency and νf is the last evaluated frequency (in this relationship, the lower the444
value, the more efficient the filter is). Since, in terms of magnitude, a frequency band when cut by an ideal445
filter should be attenuated towards negative infinity (−∞), we have to pick a limit for the calculation of the446
area under the curves. In our case, after a visual inspection, the baseline for calculation chosen was −25447
dB, because this is the closest integer value to the lowest values of magnitude.448
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Figure 10. Counter-efficiency of the circuits when compared to ideal filters (the lower the value, the better
the filter’s performance).
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Figure 10 depicts the counter-efficiency analysis performed for the three circuits. As it is shown, for449
different frequency bands we have some circuits performing better than others. Also, each circuit has a450
preferable frequency band for achieving maximum efficiency. For frequencies lower than or equal to 80 Hz,451
Circuit C seems the most efficient, especially at 60 Hz, while frequencies around 100 Hz show Circuit B as452
the most efficient which is also the band where it performs the best. Circuit A, on the other hand, has its453
best performance for 120 Hz, and probably for higher frequencies as well if the trend continues.454

This shift in performance may allow us to control which type of circuit we want to activate inside the455
brain depending on which activity the subject is performing at the time, e.g. being awake or being asleep.456
These changes may be induced by the intake of specific drugs that alter synaptic properties in a neuronal457
connection.458

Figure 11 shows a parallel analysis between the magnitude in dB and the accuracy of the filters with459
AND gates in cascade. Each circuit is identified by a pair of characters, the first is the letter referring to the460
circuit analyzed, the second is how many AND gates were connected in cascade. For example, A2 means461
Circuit A with two AND gates in cascade, as illustrated in Figure 5B.462
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Figure 11. Parallel between Magnitude (dB) and Accuracy of the circuits with AND gates in cascade.

The results suggest that, by increasing the number of gates in cascade, we have to deal with attenuation463
in the network due to propagation caused by specific characteristics of the cell, such as the connection464
probability; hence, the more gates in cascade the worse the performance of the circuit. Also, even though465
the ratio keeps going downwards, at some point, the accuracy will start to shoot up. With careful evaluation,466
the dip in the accuracy along mid-range frequencies is very low in terms of scale, showing a difference of467
only around 0.03 on the values of accuracy.468

4 DISCUSSION

Synaptic weight plays a role in the influence of the pre-synaptic stimuli and its impact on the post-synaptic469
neuron and has a value proportional to the synaptic conductance (Gardner, 1989) which is driven by the470
amount and type of neurotransmitters that are being bound to the post-synaptic terminals. The higher471
the connection probability between pairs of neurons, the stronger the influence of a specific synaptic472
weight. This is due to the proportional relationship that the weight has with each synaptic connection that473
individually releases a certain amount of neurotransmitters, hence, different neuron types may affect the474
influence of a fixed value of synaptic weight. This explains how the accuracy values fluctuate between475
different types of gates and circuits as shown in Fig. 11. Within a larger network spatial dimension, the476
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types of neurons may drive a higher accuracy fluctuation since the network connection exhibits different477
synaptic weights between each other.478

With our model, we have mainly investigated the attenuation on the spiking frequency for three different479
types of circuits in which we decrease the number of OR gates by replacing them with AND gates.480
We were also able to have the fine-tuning synaptic properties showing a difference of around 5 dB in481
performance between the curves in Figure 9B. Changes in the synapse are also considered (Vogels and482
Abbott, 2005), either by strengthening or weakening specific synaptic connections, logic gates were483
built within a homogeneous network of integrate-and-fire neurons. Moreover, the experiments conducted484
by (Goldental et al., 2014) followed a procedure that enforced stimulations on neuronal circuits within485
a network of cortical cells in-vitro and they do propose other types of gates such as XOR and NOT.486
Furthermore, we increased the number of AND gates in a cascade-like manner in order to confirm that487
the longer the line of cascade gates, the more attenuated the signal should be if none of those elements488
receives any kind of external stimuli despite the spike coming from the circuit, and this result is depicted489
in Figure 11. A peak value in the difference of around 8 dB occurs in Circuit A, decreasing to around490
5 dB in Circuit B and there is a small difference in Circuit C. The transfer function derived from the491
Hodgkin-Huxley linear model suggests a band-pass behavior of the system (Plesser and Geisel, 1999) for492
very low frequencies leaving us with a low-pass filter acting on higher frequencies ranging from 5 to 150493
Hz. Considering the time for a spike to be fired that comprises depolarization, repolarization, and refractory494
period, higher frequencies will lead to saturation and non-realistic behavior of neuronal firing.495

Our results, therefore, suggest that neuronal logic circuits can be used to construct also digital filters,496
filtering abnormal high-frequency activity which can have many sources including neurodegenerative497
diseases. A metric of counter-efficiency was also proposed, which should show how far apart the real results498
are from the ideal cases. We found that frequency bands were found to be of optimal value for different499
types of circuits such as 60 Hz for circuit C, 100 Hz for circuit B, and 120 Hz for circuit A, as shown500
in Figure 10. Based on the presented results, we demonstrate that by reconfiguring the gates inside the501
digital filters we can shift the intensity with how we attenuate the spiking frequency allowing an on-the-fly502
adaptation of the filtering tasks depending on the activity that is being performed by the subject where, for503
instance, circuit C should outperform both A and B for frequencies lower than or equal to 80 Hz.504

The envisioned application of the proposed mathematical framework is for in-silico pharmacology and505
how it can be used to provide advanced prediction supporting computational strategies to test drugs. Since506
drug design and discovery in neuroscience are very challenging, especially due to the complexity of507
the brain and the significant impediment of the blood-brain barrier (BBB) imposes on the delivery of508
therapeutic agents to the brain. The success rate for approval by competent authorities of such drugs is less509
than 10%. Such a low rate is attributed not only to factors related to the disease itself, such as complexity,510
slow development, and gradual onset but also, to the limited availability of animal models with good511
predictive validity and the limited understanding of the biological side of the brain (Geerts et al., 2020).512
The system model derived from a set of coupled neuron compartments can help push forward the design of513
these neuronal filters and provide a platform for in silico drug-induced treatments on top of engineered514
biological models of neurons. A platform that could lead to cost-effective drug development and analysis of515
potential bio-computational units capable of enhancing signal processing in the brain, as well as predicting516
long-term effects of using a specific drug are potential uses of the proposed mathematical framework.517
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5 CONCLUSION

In this work, we proposed a reconfigurable spike filtering design using neuronal networks that behave as a518
digital logic circuit. This approach requires the cells to be sensitive to modifications through chemicals519
delivered through several proposed methods available in the literature. From the Hodgkin-Huxley action520
potential model we developed a mathematical framework to obtain the transfer function of the filter. This521
required a linearization of the Hodgkin-Huxley model that changes the cable theory simplification for each522
cell compartment. To evaluate the system, we have used our transfer function as well as the NEURON523
simulator to show how the frequency of operation, logic circuit configuration as well as logic circuit524
size can affect the accuracy and efficiency of the signal propagation. We observed that all-ANDs circuit525
produces more accurate results concerning their truth-table when compared to all-ORs. In addition, the526
results show that each digital logic circuit is also reconfigurable in terms of cut-off frequency of the filter,527
by manipulating the types of gates in the last layer of the circuit.528

We believe the proposed filter design and its mathematical framework will contribute to synthetic biology529
approaches for neurodegenerative disorders such as epilepsy, by showing how the control of cellular530
communication inside a small population can affect the propagation of signals. For future work, we plan531
the use of non-neuronal cells, e.g. astrocytes, for the control of gating operations and the assessment of532
neuronal filtering capabilities at a network level. Treatment techniques based on this method can be a533
radical new approach to reaching precision and adaptable outcomes, inspired from electronic engineering534
as well as communication engineering. Such techniques could tackle at a single-cell level, neurons affected535
by seizure-induced high-frequency firing or bypass neurons that have been affected by a disease-induced536
neuronal death and degeneration, thus keeping the neuronal pathway working at a performance as optimal537
as possible.538
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