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ABSTRACT
A major challenge in neuronal molecular communications lies in
modulating signals through the neuronal network of the cortex
that will minimize interference with the natural signalling. In this
paper, we propose the use of Electroencephalogram (EEG) signals
as a sensing mechanism to determine spiking interval gaps that can
be used to stimulate artificial data transfer in the cortical micro-
column.

CCS CONCEPTS
• Applied computing → Life and medical sciences; Telecom-
munications; Computational biology; Systems biology;

KEYWORDS
Nanonetworks, Molecular Communication, Information Theory,
EEG, Optogenetics

ACM Reference Format:
Geoflly L. Adonias, Michael Taynnan Barros, Linda Doyle, and Sasitharan
Balasubramaniam. 2018. Utilising EEG Signals for Modulating Neural Molec-
ular Communications. In NANOCOM ’18: ACM The Fifth Annual Interna-
tional Conference on Nanoscale Computing and Communication (NANOCOM
’18), September 5–7, 2018, Reykjavik, Iceland. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3233188.3236333

1 INTRODUCTION
Recent studies in molecular communication have investigated the
maximum capacity of sending information through neurons. A
question remains as to how stimulation of neurons to transmit
information can be achieved while minimizing interference with
natural signalling process. In particular when miniature nanoscale
implantables such Wireless Optogenetics Nanonetworks (WiOptND)
are used to stimulate the neurons. One possible approach is to
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Figure 1: System Architecture.

integrate a sensing system within the cortex that will sense the
neural activities, however, this leads to increased complexity.

The objective of this paper is to present a new form of Brain-
Computer Interface (BCI), where the EEG measurements are used
to determine the activity of the cortex, which in turn can provide
new forms of neuronal molecular communication modulation. The
overall proposed system is illustrated in Figure 1. There is a re-
lationship that exists between the neuron firing patterns and the
EEG signalling, as shown in Figure 2. A neuron can slow down or
speed up its firing rate depending on tasks being performed by the
subject. Therefore, based on this, our aim is to transmit information
through the low spiking patterns of the neurons, and in particular
during the gaps.

2 CORTICAL COLUMN ARTIFICIAL DATA
TRANSFER

TheMicro-column activity (MCA) depends on parameters regarding
its structure such as number, type and configuration of the cells and
topology of the column. The EEG signal is measured passed through
a band-pass filter for both the delta and gamma frequency bands
withwhich the power of the gamma signal and the phase of the delta
signal are determined. The multi-unit activity is then predicted by
themodel proposed by [4] and represented as S =Wγωγ +Θ∆ω∆+ε,
where ωγ ,∆ are the weights of power and phase,Wγ and Θ∆ are
oscillatory power and phase and ε is a constant error term. Further
details regarding the statistical estimation of the weights and the
use of only gamma and delta signals can be found in [4].

The probability that k spikes are fired during a giving time inter-
val in which S spikes are expected, is given by P(k ∈ S) = Ske−S /k!.
Therefore, the probability of communication gap, Pдap , would be
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(a) Evoked EEG.
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(b) Spike activity.

Figure 2: Relationship between the (a) normalised evoked EEG and
the (b) spike raster plot data from visual stimuli.

equal to the probability of k = 0 spikes. Thus, Pдap = p(x = 0) =
e−S . Time intervals, with duration τ , are discrete time slots in which
a single bit is transmitted, and is defined as τ = T /Nb , where T
is the total time of observation and Nb is the total number of bits.
The information rate, R, which is used to analyse the ability of a
sender to communicate multiple bits of information to a receiver, is
the maximum average amount of information transferred per unit
time and is given as R = C(X ;Y )/τ , whereC(X ;Y ) is the maximum
average mutual information.

3 RESULTS AND DISCUSSION
In this section, the results obtained from simulations performed
using NEURON and Python are presented [1]. The cells models
are arranged according to their respective layers and connection
probabilities based in [2]. Each column is arranged with one cell per
layer and a fractional noise parameter is set to zero so it would be
possible to evaluate the interference caused by the free spreading
of spikes fired in both single- and multi-unit arrangements. The
EEG readings of neuronal activity are based on recordings from a
10-20 electrode system [3]. The data is analysed through a signal
processing algorithm to detect gaps that can be used to modulate
signals. Based on this, we stimulate the neurons to transmit artificial
data within these gaps.

Figure 3(a) depicts how a larger number of transmitted bits along
with a lower Pдap implies more interference across the column,
considering bit sequences randomly generated in relation to Pдap ,
which represents a decrease in the channel capacity between Tx
(L23) and Rx (L6). This decay follows the shape of an exponen-
tial function getting very close to zero when it approaches 100
transmitted bits.

Figure 3(b), on the left side, shows that neighbouring columns,
simulated for 50 transmitted bits and a Pдap = 0.5, resulting in
more interference in the channel which leads to a decrease, by a
factor of approximately 2, in the capacity and information rate. The
right side illustrates a input probability collected from real EEG
readings.

The columnar arrangements were kept the same for all simula-
tions, but any change in their position, connection probability or
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Figure 3: Analysis of the channel regarding the relationship be-
tween the (a) capacity and the number of transmitted bits in a
1000 ms simulation and the (b) influence of the number of cortical
columns in the information rate (left) and the input probability of
the system (right).

the number of dendrites, represents a cascade of events that would
lead to performance changes.

4 CONCLUSIONS
Our proposed artificial data transfer system results demonstrates
how neighbouring cells represent a significant level of interference
even if only one cell is firing spikes. At the same time, the correla-
tion between the EEG signals and spiking activity may vary across
situations requiring a careful approach for interpreting the signals.
The proposed work can lead to a new form of BCI for neural com-
munication systems and pave the way towards new applications
and a more reliable process to enhance the capabilities of the brain
by inserting artificial data without interfering with the natural flow
of neuronal information.
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